Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DESY Publication Dat...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Synthesis, structure refinement and single-crystal elasticity of Al-bearing superhydrous phase B

Authors: Li, Xinyang; Speziale, Sergio; Glazyrin, Konstantin; Wilke, Franziska D. H.; Liermann, Hanns-Peter; Koch-Mueller, Monika;

Synthesis, structure refinement and single-crystal elasticity of Al-bearing superhydrous phase B

Abstract

Dense hydrous magnesium silicates (DHMSs) with large water content and wide stability fields are a potential H2O reservoir in the deep Earth. Al-bearing superhydrous phase B (shy-B) with a wider stability field than the Al-free counterpart can play an important role in understanding H$_2$O transport in the Earth’s transition zone and topmost lower mantle. In this study, a nominally Al-free and two different Al-bearing shy-B with 0.47(2) and 1.35(4) Al atoms per formula unit (pfu), were synthesized using a rotating multi-anvil press. The single-crystal structures were investigated by X-ray diffraction (XRD) complemented by Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). Single-crystal XRD shows that the cell parameters decrease with increasing Al-content. By combining X-ray diffraction and spectroscopy results, we conclude that the Al-poor shy-B crystallizes in the Pnn2 space group with hydrogen in two different general positions. Based on the results of the single crystal X-ray diffraction refinements combined with FTIR spectroscopy, three substitutions mechanisms are proposed: 2 Al$^{3+}$ = Mg$^{2+}$ + Si$^{4+}$; Mg$^{2+}$ ☐$^{Mg2+}$ + 2H$^+$ (☐$^{Mg2+}$ means vacancy in Mg site); ; Si$^{4+}$ = Al$^{3+}$ + H$^+$. Thus, in addition to the two general H positions, hydrogen is incorporated into the hydrous mineral via point defects. The elastic stiffness coefficients were measured for the Al-shy-B with 1.35 pfu Al by Brillouin scattering (BS). Al-bearing shy-B shows lower C$_{11}$, higher C$_{22}$ and similar C$_{33}$ when compared to Al-free shy-B. The elastic anisotropy of Al-bearing shy-B is also higher than that of the Al-free composition. Such different elastic properties are due to the effect of lattice contraction as a whole and the specific chemical substitution mechanism that affect bonds strength. Al-bearing shy-B with lower velocity, higher anisotropy and wider thermodynamic stability can help to understand the low velocity zone and high anisotropy region in the subducted slab located in Tonga.

American mineralogist 107(5), 885 - 895 (2021). doi:10.2138/am-2022-7989

Published by GeoScienceWorld, Alexandria, Va.

Keywords

info:eu-repo/classification/ddc/540, 540

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green