Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Medicinal...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Medicinal Chemistry
Article . 2020 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High Selectivity of an α-Conotoxin LvIA Analogue for α3β2 Nicotinic Acetylcholine Receptors Is Mediated by β2 Functionally Important Residues

Authors: Xiaopeng Zhu; Si Pan; Manyu Xu; Lu Zhang; Jinfang Yu; Jinpeng Yu; Yong Wu; +9 Authors

High Selectivity of an α-Conotoxin LvIA Analogue for α3β2 Nicotinic Acetylcholine Receptors Is Mediated by β2 Functionally Important Residues

Abstract

The α3β2 and α3β4 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the central and peripheral nervous systems, playing critical roles in various physiological processes and in such pathologies as addiction to nicotine and other drugs of abuse. α-Conotoxin LvIA, which we previously isolated from Conus lividus, modestly discriminates α3β2 and α3β4 rat nAChRs exhibiting a ∼17-fold tighter binding to the former. Here, alanine scanning resulted in two more selective analogues [N9A]LvIA and [D11A]LvIA, the former having a >2000-fold higher selectivity for α3β2. The determined crystal structures of [N9A]LvIA and [D11A]LvIA bound to the acetylcholine-binding protein (AChBP) were followed by homologous modeling of the complexes with the α3β2 and α3β4 nAChRs and by receptor mutagenesis, which revealed Phe106, Ser108, Ser113, and Ser168 residues in the β2 subunit as essential for LvIA binding. These results may be useful for the design of novel compounds of therapeutic potential targeting α3β2 nAChRs.

Related Organizations
Keywords

Insecta, Conus Snail, Nicotinic Antagonists, Receptors, Nicotinic, Protein Structure, Secondary, Rats, Xenopus laevis, Animals, Humans, Female, Carrier Proteins, Conotoxins, Crystallization, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!