Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
IIASA DARE
Part of book or chapter of book . 2021
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Chapter 4 Two-Stage Nonsmooth Stochastic Optimization and Iterative Stochastic Quasigradient Procedure for Robust Estimation, Machine Learning and Decision Making

Authors: Ermolieva, T.; Ermoliev, Y.; Obersteiner, M.; Rovenskaya, E.;

Chapter 4 Two-Stage Nonsmooth Stochastic Optimization and Iterative Stochastic Quasigradient Procedure for Robust Estimation, Machine Learning and Decision Making

Abstract

Uncertainties, risks, and disequilibrium are pervasive characteristics of modern socio-economic, technological, and environmental systems involving interactions between humans, economics, technology and nature. The systems are characterized by interdependencies, discontinuities, endogenous risks and thresholds, requiring nonsmooth quantile-based performance indicators, goals and constraints for their analysis and planning. The paper discusses the need for the two-stage stochastic optimization and the stochastic quasigradient (SQG) procedures to manage such systems. The two-stage optimization enables designing a robust portfolio of interdependent precautionary strategic and adaptive operational decisions making the systems robust with respect to potential uncertainty and risks. The SQG iterative algorithms define a “searching” process, which resembles a sequential adaptive learning and improvement of decisions from data and simulations, i.e. the so-called Adaptive Monte Carlo optimization. The SQG methods are applicable in cases when traditional stochastic approximation, gradient or stochastic gradient methods do not work, in particular, to general two-stage problems with implicitly defined goals and constraints functions, nonsmooth and possibly discontinuous performance indicators, risk and uncertainties shaped by decision of various agents. Stylized models from statistics, machine learning, robust decision making are presented to illustrate the two-stage (strategic-adaptive) modeling concept and the SQG procedures. The stylized models are parts of larger integrated assessment models developed at IIASA, e.g. Global Biosphere Management model (GLOBIOM) and Integrated Catastrophe Risk Management model (ICRIM).

Keywords

330, 510

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!