
As molecular research on hemp (Cannabis sativa L.) continues to advance, there is a growing need for the accumulation of more diverse genome data and more accurate genome assemblies. In this study, we report the three-way assembly data of a cannabidiol (CBD)-rich cannabis variety, 'Pink Pepper' cultivar using sequencing technology: PacBio Single Molecule Real-Time (SMRT) technology, Illumina sequencing technology, and Oxford Nanopore Technology (ONT). This assembly anchors scaffolds to the ten chromosomes of hemp, and to avoid confusion with previous cannabis genetic research, the chromosomes have been labeled based on an earlier reference genome. The total assembled genome length is 770 Gbp, with a GC content of 34.09% and a repeat region accounting for 77.13% of the genome. This assembly, which incorporates the unique strengths of the three sequencing technologies, demonstrated the highest complete BUSCO scores (97.8%-99.6%) among the reported cannabis genomes, as evaluated using three different BUSCO databases. With annotations for 30,459 protein-coding genes, this dataset can serve as a valuable resource for advancing genetic research on hemp.
Data Descriptor, Science, Q, Cannabidiol, Haploidy, Chromosomes, Plant, Genome, Plant, Cannabis
Data Descriptor, Science, Q, Cannabidiol, Haploidy, Chromosomes, Plant, Genome, Plant, Cannabis
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
