Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemosphere
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Rate constants of sulfate radical anion reactions with organic molecules: A review

Authors: László Wojnárovits; Erzsébet Takács;

Rate constants of sulfate radical anion reactions with organic molecules: A review

Abstract

The rate constants of sulfate radical anion reaction (kSO4-) with about 230 organic molecules of environmental interest are tabulated and discussed, together with both the methods of rate constant determinations and the reaction mechanisms. kSO4-'s were collected from the original publications. The highest values in the ∼109 M-1 s-1 range are published for aromatic molecules. There is a tendency that electron donating substituents increase and electron withdrawing substituents decrease these values. There are just a few compounds with rate constants established using different techniques in different laboratories. kSO4-'s determined in different laboratories by the direct techniques, pulse radiolysis or laser flash photolysis, in most cases agree reasonably. The values determined by competitive experimental techniques, by complex kinetics calculations, or by modelling show a large scatter. Some of these techniques seem to be questionable for kSO4- determination. The sulfate radical anion reacts with ketone and amine moieties of molecules by electron transfer. The same mechanism is also suggested for the reaction with aromatic rings. However, in a few cases addition to the double bond and sulfate anion elimination reactions were distinguished. A typical reaction with the aliphatic parts of the molecule is H-abstraction.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    215
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
215
Top 0.1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!