Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Brain Rese...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Brain Research
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

The effect of lithium on expression of genes for inositol biosynthetic enzymes in mouse hippocampus; a comparison with the yeast model

Authors: Alon, Shamir; Galit, Shaltiel; Miriam L, Greenberg; R H, Belmaker; Galila, Agam;

The effect of lithium on expression of genes for inositol biosynthetic enzymes in mouse hippocampus; a comparison with the yeast model

Abstract

In the de novo synthesis of inositol, the conversion of D-glucose-6-phosphate to L-myo-inositol-1-phosphate (MIP) is catalyzed by MIP synthase. Little is known about mammalian MIP synthase and nothing is known about its regulation. The second step in inositol biosynthesis is the conversion of MIP to inositol by inositol-monophosphatase (IMPase), a common step to inositol production via the de novo pathway and its recycling from inositol phosphates. Because lithium inhibits IMPase both in yeast and in mammals, and the drug upregulates yeast MIP synthase (INO1) and downregulates IMPase (INM1), the present study was undertaken to determine whether chronic in vivo therapeutic lithium concentrations affect MIP synthase and IMPase expression in mouse frontal cortex and hippocampus. Mice were treated with food containing LiCl (2.5 g/kg) for 10 days. RNA was purified from the brain areas and mRNA amplified using RT-PCR. Expression of MIP synthase and IMPA1 (one of the genes coding for IMPase) but not IMPA2 was upregulated in mouse hippocampus. None of the genes were affected in the frontal cortex. In yeast, when inositol is limiting, the heterodimeric transcriptional activator Ino2p/Ino4p derepresses expression of INO1 by binding to the upstream activation sequence UAS(INO). Using the TFSEARCH program, we found that the promoter of the virtual human MIP synthase gene contains upstream stimulating factor (USF) elements with a similar core binding sequence. The fact that lithium treatment upregulates both MIP synthase and IMPA1 mRNA levels in mouse hippocampus may reflect a compensatory response of both genes to inositol depletion.

Keywords

Male, Mice, Inbred ICR, Reverse Transcriptase Polymerase Chain Reaction, Enzyme-Linked Immunosorbent Assay, Training Support, Hippocampus, Phosphoric Monoester Hydrolases, Frontal Lobe, Mice, Gene Expression Regulation, Antimanic Agents, Yeasts, Animals, Myo-Inositol-1-Phosphate Synthase, RNA, Messenger, Lithium Chloride, Inositol, DNA Primers, Densitometry

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!