Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Estimating surface water area changes using time-series Landsat data in the Qingjiang River Basin, China

Authors: Zhiqiang Du; Bin Linghu; Feng Ling; Wenbo Li; Weidong Tian; Hailei Wang; Yuanmiao Gui; +2 Authors

Estimating surface water area changes using time-series Landsat data in the Qingjiang River Basin, China

Abstract

The Qingjiang River Basin, which is 423 km long in the Hubei province, China, is the first large tributary of the Yangtze River below the Three Gorges. The Qingjiang River Basin surface water area monitoring plays an important role in the water resource management strategy and regular monitoring management of the Yangtze River watershed. Hydropower cascade exploitation, which started in 1987, has formed three reservoirs including the Geheyan reservoir, the Gaobazhou reservoir, and the Shuibuya reservoir in the midstream and downstream of the Qingjiang River Basin. They have made a great impact on surface water area changes of the Qingjiang River Basin and need to be taken into account. We monitor the Qingjiang River Basin surface water area changes from 1973 to 2010. Ten scenes from the Multispectral Scanner System (MSS), seven scenes from the Thematic Mapper (TM), and two scenes from the Enhanced Thematic Mapper Plus (ETMþ) remote sensing data of Landsat satellites, the normal- ized different water index (NDWI), the modified NDWI (MNDWI), and Otsu image segmenta- tion method were employed to quantitatively estimate the Qingjiang River Basin surface water area in the 1970s, 1980s, 1990s, and 2000s, respectively. The results indicate that the surface water area of the Qingjiang River Basin shows a growing trend with the hydropower cascade development from the 1980s to the first decade of the 21st century. The study concluded the significance of human activities impact on surface water spatiotemporal distribution. Surface water accretion is significant in most parts of the Qingjiang River Basin and might be related to the constructed cascade hydropower dams. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). (DOI: 10.1117/1.JRS.6.063609)

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    107
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
107
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!