Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neurochem...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neurochemistry
Article . 2006 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Synaptic scaffolding molecule (S‐SCAM) membrane‐associated guanylate kinase with inverted organization (MAGI)‐2 is associated with cell adhesion molecules at inhibitory synapses in rat hippocampal neurons

Authors: Kazutaka, Sumita; Yuji, Sato; Junko, Iida; Akira, Kawata; Mamiko, Hamano; Susumu, Hirabayashi; Kikuo, Ohno; +2 Authors

Synaptic scaffolding molecule (S‐SCAM) membrane‐associated guanylate kinase with inverted organization (MAGI)‐2 is associated with cell adhesion molecules at inhibitory synapses in rat hippocampal neurons

Abstract

AbstractSynaptic scaffolding molecule (S‐SCAM) is a synaptic protein, which harbors five or six PSD‐95/Discs large/ZO‐1 (PDZ), a guanylate kinase and two WW domains. It interacts with NMDA receptor subunits, neuroligin and β‐catenin, and is involved in the accumulation of neuroligin at excitatory synapses. In this study, we have demonstrated S‐SCAM is localized at inhibitory synapses in rat primary cultured hippocampal neurons. We have identified β‐dystroglycan (β‐DG) as a binding partner for S‐SCAM at inhibitory synapses. WW domains of S‐SCAM bind to three sequences of β‐DG. We have also revealed that S‐SCAM can interact with neuroligin 2, which is known to be exclusively localized at inhibitory synapses. The WW domains and the second PDZ domain of S‐SCAM are involved in the interaction with neuroligin 2. β‐DG, neuroligin 2 and S‐SCAM form a tripartite complex in vitro. Neuroligin 2 is detected in the immunoprecipitates by anti‐β‐DG antibody from rat brain. S‐SCAM, β‐DG and neuroligin 2 are partially co‐localized in rat hippocampal neurons. These data suggest that S‐SCAM is associated with β‐DG and neuroligin 2 at inhibitory synapses, and functions as a linker between the dystrophin glycoprotein complex and the neurexin–neuroligin complex.

Keywords

Neurons, Blotting, Western, Electrophoretic Mobility Shift Assay, Nerve Tissue Proteins, Neural Inhibition, Embryo, Mammalian, Hippocampus, Immunohistochemistry, Protein Structure, Tertiary, Rats, Cricetinae, Two-Hybrid System Techniques, Chlorocebus aethiops, Synapses, Animals, Carrier Proteins, Guanylate Kinases, Neural Cell Adhesion Molecules, Cells, Cultured, Adaptor Proteins, Signal Transducing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    81
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
81
Top 10%
Top 10%
Top 10%
bronze