Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archives of Biochemi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Archives of Biochemistry and Biophysics
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterization of the binding sites for the interactions between FKBP12 and intracellular calcium release channels

Authors: Sunmi Kang; Sunghyouk Park; He Wen; Youngmin Song; Hye-ji Yang; Yonghyun Song; Mi-Hyun Kim;

Characterization of the binding sites for the interactions between FKBP12 and intracellular calcium release channels

Abstract

FKBP12, an FK506 binding protein, interacts with type 1 ryanodine receptor (RyR1) and modulates its calcium channel activity. However, there are many opposing reports of FKBP12's interaction with other related calcium channels, such as type 1 IP(3) receptor and type 3 ryanodine receptor (IP(3)R1 and RyR3). In addition, the involvement of the prolyl-dipeptide motif in the calcium channels and the corresponding binding residues in FKBP12 remain controversial. Through pulldown assays with recombinant proteins, we provide biochemical evidence of the interaction between FKBP12 and RyR1, RyR3 and IP(3)R1. Using NMR chemical shift mapping, we show that the important binding residues in FKBP12 are located in its hydrophobic FK506 binding region. Consistently, we demonstrate that FK506 can competitively inhibit the interaction between FKBP12 and the dipeptide motifs of the calcium channels. We believe our results shed lights on the binding mechanism of calcium channel-FKBP12 interaction.

Related Organizations
Keywords

Models, Molecular, Binding Sites, Amino Acid Motifs, Ryanodine Receptor Calcium Release Channel, Tacrolimus Binding Protein 1A, Tacrolimus, Protein Interaction Mapping, Humans, Inositol 1,4,5-Trisphosphate Receptors, Protein Interaction Domains and Motifs, Nuclear Magnetic Resonance, Biomolecular, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!