Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2000 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The interaction of nitric oxide (NO) with the yeast transcription factor Ace1: A model system for NO-protein thiol interactions with implications to metal metabolism

Authors: Dennis J. Thiele; Jon M. Fukuto; Christopher H. Switzer; Edith Butler Gralla; Kenneth T. Chiang; Joan Selverstone Valentine; Masaru Shinyashiki;

The interaction of nitric oxide (NO) with the yeast transcription factor Ace1: A model system for NO-protein thiol interactions with implications to metal metabolism

Abstract

Nitric oxide (NO) was found to inhibit the copper-dependent induction of the yeast CUP1 gene. This effect is attributable to an inhibition of the copper-responsive CUP1 transcriptional activator Ace1. A mechanism is proposed whereby the metal binding thiols of Ace1 are chemically modified via NO- and O 2 -dependent chemistry, thereby diminishing the ability of Ace1 to bind and respond to copper. Moreover, it is proposed that demetallated Ace1 is proteolytically degraded in the cell, resulting in a prolonged inhibition of copper-dependent CUP1 induction. These findings indicate that NO may serve as a disrupter of yeast copper metabolism. More importantly, considering the similarity of Ace1 to other mammalian metal-binding proteins, this work lends support to the hypothesis that NO may regulate/disrupt metal homeostasis under both normal physiological and pathophysiological circumstances.

Keywords

Saccharomyces cerevisiae Proteins, Time Factors, Dose-Response Relationship, Drug, Saccharomyces cerevisiae, Nitric Oxide, beta-Galactosidase, DNA-Binding Proteins, Fungal Proteins, Quaternary Ammonium Compounds, Models, Chemical, Metals, Metallothionein, Sulfhydryl Compounds, Carrier Proteins, Plasmids, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Top 10%
Top 10%
Top 10%
bronze