Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Clinical ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Clinical Medicine
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2023
License: CC BY
Data sources: PubMed Central
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A New Approach to Detecting Atrial Fibrillation Using Count Statistics of Relative Changes between Consecutive RR Intervals

Authors: Szymon Buś; Konrad Jędrzejewski; Przemysław Guzik;

A New Approach to Detecting Atrial Fibrillation Using Count Statistics of Relative Changes between Consecutive RR Intervals

Abstract

Background: The ratio of the difference between neighboring RR intervals to the length of the preceding RR interval (x%) represents the relative change in the duration between two cardiac cycles. We investigated the diagnostic properties of the percentage of relative RR interval differences equal to or greater than x% (pRRx%) with x% in a range between 0.25% and 25% for the distinction of atrial fibrillation (AF) from sinus rhythm (SR). Methods: We used 1-min ECG segments with RR intervals with either AF (32,141 segments) or SR (32,769 segments) from the publicly available Physionet Long-Term Atrial Fibrillation Database (LTAFDB). The properties of pRRx% for different x% were analyzed using the statistical procedures and metrics commonly used to characterize diagnostic methods. Results: The distributions of pRRx% for AF and SR differ significantly over the whole studied range of x% from 0.25% to 25%, with particularly outstanding diagnostic properties for the x% range of 1.5% to 6%. However, pRR3.25% outperformed other pRRx%. Firstly, it had one of the highest and closest to perfect areas under the curve (0.971). For pRR3.25%, the optimal threshold for distinction AF from SR was set at 75.32%. Then, the accuracy was 95.44%, sensitivity was 97.16%, specificity was 93.76%, the positive predictive value was 93.85%, the negative predictive value was 97.11%, and the diagnostic odds ratio was 514. The excellent diagnostic properties of pRR3.25% were confirmed in the publicly available MIT–BIH Atrial Fibrillation Database. In a direct comparison, pRR3.25% outperformed the diagnostic properties of pRR31 (the percentage of successive RR intervals differing by at least 31 ms), i.e., so far, the best single parameter differentiating AF from SR. Conclusions: A family of pRRx% parameters has excellent diagnostic properties for AF detection in a range of x% between 1.5% and 6%. However, pRR3.25% outperforms other pRRx% parameters and pRR31 (until now, probably the most robust single heart rate variability parameter for AF diagnosis). The exquisite pRRx% diagnostic properties for AF and its simple computation make it well-suited for AF detection in modern ECG technologies (mobile/wearable devices, biopatches) in long-term monitoring. The diagnostic properties of pRRx% deserve further exploration in other databases with AF.

Keywords

cardiac arrhythmia, RR intervals, electrocardiography, heart rate variability, atrial fibrillation, cardiac time series, Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
gold