
doi: 10.1021/jacs.1c08533
pmid: 34610739
The exploration of mechanochemical reactions has brought new opportunities for the design of functional materials. We synthesized the novel organic peroxide mechanophore bis(9-methylphenyl-9-fluorenyl) peroxide (BMPF) and examined its mechanochromic properties. The mechanism behind its mechanofluorescence was clarified and harnessed in polymer networks that can release the small fluorescent molecule 9-fluorenone upon exposure to a mechanical stimulus. Additionally, polymer networks cross-linked with BMPF units are able to tolerate temperatures up to 110 °C without any change in optical properties or mechanical strength. As mechanophores based on organic peroxide have rarely been documented so far, these fascinating results suggest excellent potential for applications of BMPF in stress-responsive materials. The mechanochemical protocol demonstrated here may provide guiding principles to expand the field of mechanochromic peroxides.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 47 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
