
arXiv: 1908.01887
In order to practically implement the door opening task, a policy ought to be robust to a wide distribution of door types and environment settings. Reinforcement Learning (RL) with Domain Randomization (DR) is a promising technique to enforce policy generalization, however, there are only a few accessible training environments that are inherently designed to train agents in domain randomized environments. We introduce DoorGym, an open-source door opening simulation framework designed to utilize domain randomization to train a stable policy. We intend for our environment to lie at the intersection of domain transfer, practical tasks, and realism. We also provide baseline Proximal Policy Optimization and Soft Actor-Critic implementations, which achieves success rates between 0% up to 95% for opening various types of doors in this environment. Moreover, the real-world transfer experiment shows the trained policy is able to work in the real world. Environment kit available here: https://github.com/PSVL/DoorGym/
Accepted to NeurIPS2019 Deep Reinforcement Learning Workshop. Full version
FOS: Computer and information sciences, Computer Science - Robotics, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Robotics (cs.RO), Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Robotics, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Robotics (cs.RO), Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
