Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ figsharearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Other literature type . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Other literature type . 2021
License: CC BY
Data sources: Datacite
Journal of Biomolecular Structure and Dynamics
Article . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

In-silico evidences on filarial cystatin as a putative ligand of human TLR4

Authors: Nabarun Chandra Das; Parth Sarthi Sen Gupta; Satyaranjan Biswal; Ritwik Patra; Malay Kumar Rana; Suprabhat Mukherjee;

In-silico evidences on filarial cystatin as a putative ligand of human TLR4

Abstract

Cystatin is a small molecular weight immunomodulatory protein of filarial parasite that plays a pivotal role in downregulating the host immune response to prolong the survival of the parasite inside the host body. Hitherto, this protein is familiar as an inhibitor of human proteases. However, growing evidences on the role of cystatin in regulating inflammatory homeostasis prompted us to investigate the molecular reasons behind the explicit anti-inflammatory trait of this protein. We have explored molecular docking and molecular dynamics simulation approaches to explore the interaction of cystatin of Wuchereria bancrofti (causative parasite of human filariasis) with human Toll-like receptors (TLRs). TLRs are the most crucial component of frontline host defence against pathogenic infections including filarial infection. Our in-silico data clearly revealed that cystatin strongly interacts with the extracellular domain of TLR4 (binding energy=-93.5 ± 10 kJ/mol) and this biophysical interaction is mediated by hydrogen bonding and hydrophobic interaction. Molecular dynamics simulation analysis revealed excellent stability of the cystatin-TLR4 complex. Taken together, our data indicated that cystatin appears to be a ligand of TLR4 and we hypothesize that cystatin-TLR4 interaction most likely to play a key role in activating the alternative activation pathways to establish an anti-inflammatory milieu. Thus, the study provokes the development of chemotherapeutics and/or vaccines for targeting the cystatin-TLR4 interaction to disrupt the pathological attributes of human lymphatic filariasis. Our findings are expected to provide a novel dimension to the existing knowledge on filarial immunopathogenesis and it will encourage the scientific communities for experimental validation of the present investigation. Communicated by Ramaswamy H. Sarma

Keywords

Molecular Docking Simulation, Toll-Like Receptor 4, Animals, Humans, Wuchereria bancrofti, Molecular Dynamics Simulation, Ligands, Cystatins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
Green