Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Briefings in Bioinfo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Briefings in Bioinformatics
Article . 2017 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluating de novo sequencing in proteomics: already an accurate alternative to database-driven peptide identification?

Authors: Thilo, Muth; Bernhard Y, Renard;

Evaluating de novo sequencing in proteomics: already an accurate alternative to database-driven peptide identification?

Abstract

While peptide identifications in mass spectrometry (MS)-based shotgun proteomics are mostly obtained using database search methods, high-resolution spectrum data from modern MS instruments nowadays offer the prospect of improving the performance of computational de novo peptide sequencing. The major benefit of de novo sequencing is that it does not require a reference database to deduce full-length or partial tag-based peptide sequences directly from experimental tandem mass spectrometry spectra. Although various algorithms have been developed for automated de novo sequencing, the prediction accuracy of proposed solutions has been rarely evaluated in independent benchmarking studies. The main objective of this work is to provide a detailed evaluation on the performance of de novo sequencing algorithms on high-resolution data. For this purpose, we processed four experimental data sets acquired from different instrument types from collision-induced dissociation and higher energy collisional dissociation (HCD) fragmentation mode using the software packages Novor, PEAKS and PepNovo. Moreover, the accuracy of these algorithms is also tested on ground truth data based on simulated spectra generated from peak intensity prediction software. We found that Novor shows the overall best performance compared with PEAKS and PepNovo with respect to the accuracy of correct full peptide, tag-based and single-residue predictions. In addition, the same tool outpaced the commercial competitor PEAKS in terms of running time speedup by factors of around 12-17. Despite around 35% prediction accuracy for complete peptide sequences on HCD data sets, taken as a whole, the evaluated algorithms perform moderately on experimental data but show a significantly better performance on simulated data (up to 84% accuracy). Further, we describe the most frequently occurring de novo sequencing errors and evaluate the influence of missing fragment ion peaks and spectral noise on the accuracy. Finally, we discuss the potential of de novo sequencing for now becoming more widely used in the field.

Related Organizations
Keywords

Proteomics, Computational Biology, Saccharomyces cerevisiae, Pyrococcus furiosus, Mice, Sequence Analysis, Protein, Tandem Mass Spectrometry, Animals, Humans, Computer Simulation, Amino Acid Sequence, Databases, Protein, Peptides, Algorithms, Software, Sequence Tagged Sites

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    98
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
98
Top 1%
Top 10%
Top 10%
gold