Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2001 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A receptor tyrosine kinase from choanoflagellates: Molecular insights into early animal evolution

Authors: N, King; S B, Carroll;

A receptor tyrosine kinase from choanoflagellates: Molecular insights into early animal evolution

Abstract

The evolution of the Metazoa from protozoans is one of the major milestones in life's history. The genetic and developmental events involved in this evolutionary transition are unknown but may have involved the evolution of genes required for signaling and gene regulation in metazoans. The genome of animal ancestors may be reconstructed by identification of animal genes that are shared with related eukaryotes, particularly those that share a more recent ancestry and cell biology with animals. The choanoflagellates have long been suspected to be closer relatives of animals than are fungi, the closest outgroup of animals for which comparative genomic information is available. Phylogenetic analyses of choanoflagellate and animal relationships based on small subunit rDNA sequence, however, have yielded ambiguous and conflicting results. We find that analyses of four conserved proteins from a unicellular choanoflagellate, Monosiga brevicollis , provide robust support for a close relationship between choanoflagellates and Metazoa, suggesting that comparison of the complement of expressed genes from choanoflagellates and animals may be informative concerning the early evolution of metazoan genomes. We have discovered in M. brevicollis the first receptor tyrosine kinase (RTK), to our knowledge, identified outside of the Metazoa, MBRTK1. The architecture of MBRTK1, which includes multiple extracellular ligand-binding domains, resembles that of RTKs in sponges and humans and suggests the ability to receive and transduce signals. Thus, choanoflagellates express genes involved in animal development that are not found in other eukaryotes and that may be linked to the origin of the Metazoa.

Related Organizations
Keywords

Evolution, Molecular, DNA, Complementary, Sequence Homology, Amino Acid, Molecular Sequence Data, Animals, Eukaryota, Receptor Protein-Tyrosine Kinases, Amino Acid Sequence, Phylogeny

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    203
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
203
Top 10%
Top 1%
Top 10%
bronze