Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2016 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2016
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2016
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2016
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Role of CTCF in Regulating SLC45A3-ELK4 Chimeric RNA

Authors: Fujun Qin; Yansu Song; Yanmei Zhang; Loryn Facemire; Henry Frierson; Hui Li;

Role of CTCF in Regulating SLC45A3-ELK4 Chimeric RNA

Abstract

The chimeric RNA, SLC45A3-ELK4, was found to be a product of cis-splicing between the two adjacent genes (cis-SAGe). Despite the biological and clinical significance of SLC45A3-ELK4, its generating mechanism has not been elucidated. It was shown in one cell line that the binding of transcription factor CTCF to the insulators located at or near the gene boundaries, inversely correlates with the level of the chimera. To investigate the mechanism of such cis-SAGe events, we sequenced potential regions that may play a role in such transcriptional read-through. We could not detect mutations at the transcription termination site, insulator sites, splicing sites, or within CTCF itself in LNCaP cells, thus suggesting a "soft-wired" mechanism in regulating the cis-SAGe event. To investigate the role CTCF plays in regulating the chimeric RNA expression, we compared the levels of CTCF binding to the insulators in different cell lines, as well as clinical samples. Surprisingly, we did not find an inverse correlation between CTCF level, or its bindings to the insulators and SLC45A3-ELK4 expression among different samples. However, in three prostate cancer cell lines, different environmental factors can cause the expression levels of the chimeric RNA to change, and these changes do inversely correlate with CTCF level, and/or its bindings to the insulators. We thus conclude that CTCF and its bindings to the insulators are not the primary reasons for differential SLC45A3-ELK4 expression in different cell lines, or clinical cases. However, they are the likely mechanism for the same cells to respond to different environmental cues, in order to regulate the expression of SLC45A3-ELK4 chimeric RNA. This response to different environmental cues is not general to other cis-SAGe events, as we only found one out of 16 newly identified chimeric RNAs showing a pattern similar to SLC45A3-ELK4.

Keywords

Male, CCCTC-Binding Factor, Chromatin Immunoprecipitation, Monosaccharide Transport Proteins, Science, Molecular Sequence Data, Cell Line, Tumor, Sequence Homology, Nucleic Acid, Humans, Point Mutation, ets-Domain Protein Elk-4, Binding Sites, Base Sequence, Q, R, Membrane Transport Proteins, Prostatic Neoplasms, Gene Expression Regulation, Neoplastic, Repressor Proteins, HEK293 Cells, Mutation, Medicine, RNA, Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
Green
gold
Related to Research communities
Cancer Research