Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Biology
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Molecular Structure and Interaction of Recombinant Human Type XVI Collagen

Authors: Anja Kassner; Mon-Li Chu; Peter Bruckner; Holger Notbohm; Thomas Ludwig; Matthias Mörgelin; Kerstin Tiedemann; +2 Authors

Molecular Structure and Interaction of Recombinant Human Type XVI Collagen

Abstract

Collagen XVI is a minor component of at least two different extracellular fibrillar networks of specialized regions of skin and cartilage. In skin, collagen XVI is integrated into particular fibrillin-rich microfibrils lacking an amorphous elastin core. In cartilage, collagen XVI is a component of small heterotypic D-banded fibrils, mainly occurring in the territorial matrix of chondrocytes. Here, we present the first direct evidence for the molecular structure and functional properties of these fibril-associated collagens with interrupted triple helices (FACIT). We have expressed recombinantly the full-length alpha1 chain of human collagen XVI in HEK 293 EBNA cells in large quantities using an episomal expression system. Secreted full-length recombinant collagen XVI forms stable disulfide-bonded homotrimers and is rapidly proteolytically processed to distinct fragments at specific protease sequence motifs, one resembling an aggrecanase recognition site. Limited trypsin digestion assays and thermal transition curves imply sequential thermal denaturation of individual triple helical domains of this recombinant collagen, similar to authentic collagen XVI. Molecular images of collagen XVI reveal rod-like molecules which harbor multiple sharp kinks attributing a highly flexible structure presumably introduced by non-collagenous (NC) regions. Terminally located cloverleaf-shaped nodules correspond to the large NC NC11 domain of trimeric collagen XVI. The total length of individual trimeric recombinant collagen XVI molecules constitutes about 240 nm as calculated by atomic force and negative staining electron microscopy. Recombinant collagen XVI interacts with fibrillin-1 and with fibronectin indicating multiple molecular interactions in which this ubiquitously expressed and versatile FACIT-collagen can participate. In vitro generated collagen XVI provides an indispensable tool for future determination of its function during supramolecular assembly of matrix aggregates and its role in maintenance, organization and interaction of fibrillar structures.

Keywords

Glycosylation, Protein Conformation, Microscopy, Atomic Force, Chromatography, Affinity, Recombinant Proteins, Cell Line, Humans, Electrophoresis, Polyacrylamide Gel, Amino Acid Sequence, Collagen, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!