
arXiv: 2011.12848
Abstract In this study, we analyze the direct-detection constraints of light dark matter in the next-to minimal supersymmetric standard model (NMSSM) with non-universal Higgs masses (NUHM); we specially focus on the correlation between higgsino asymmetry and spin-dependent (SD) cross section. We draw the following conclusions. (i) The SD cross section is proportional to the square of higgsino asymmetry in dark matter in the NMSSM-NUHM, and hence, it is small for highly singlino-dominated dark matter. (ii) The higgsino-mass parameter is smaller than approximately in the NMSSM-NUHM due to the current muon g-2 constraint, but our scenario with light dark matter can still be alive under current constraints including the direct detection of dark matter in the spin-dependent channel. (iii) With a sizeable higgsino component in the light dark matter, the higgsino asymmetry and SD cross section can also be sizeable, but dark matter relic density is always small; thus, it can escape the direct detections. (iv) Light dark matter in the - and Z-funnel annihilation channels with sufficient relic density can be covered by future LUX-ZEPLIN (LZ) 7-ton in SD detections. (v) The spin-independent (SI) cross section is dominated by - and -exchanging channels, which can even cancel each other in some samples, leaving an SI cross section smaller by a few orders of magnitude than that of one individual channel.
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
