Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1038/s41598...
Article . 2018 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.nature.com/article...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2018
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doaj.org/article/e7ad5...
Article . 2018
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Surface display of PbrR on Escherichia coli and evaluation of the bioavailability of lead associated with engineered cells in mice

Authors: Changye Hui; Yan Guo; Wen Zhang; Chaoxian Gao; Xueqin Yang; Yuting Chen; Limei Li; +1 Authors

Surface display of PbrR on Escherichia coli and evaluation of the bioavailability of lead associated with engineered cells in mice

Abstract

AbstractHuman exposure to lead mainly occurs by ingestion of contaminated food, water and soil. Blocking lead uptake in the gastrointestinal tract is a novel prevention strategy. Whole-cell biosorbent for lead was constructed with PbrR genetically engineered on the cell surface of Escherichia coli (E. coli), a predominant strain among intestinal microflora, using lipoprotein (Lpp)-OmpA as the anchoring protein. In vitro, the PbrR displayed cells had an enhanced ability for immobilizing toxic lead(II) ions from the external media at both acidic and neutral pH, and exhibited a higher specific adsorption for lead compared to other physiological two valence metal ions. In vivo, the persistence of recombinant E. coli in the murine intestinal tract and the integrity of surface displayed PbrR were confirmed. In addition, oral administration of surface-engineered E. coli was safe in mice, in which the concentrations of physiological metal ions in blood were not affected. More importantly, lead associated with PbrR-displayed E. coli was demonstrated to be less bioavailable in the experimental mouse model with exposure to oral lead. This is reflected by significantly lower blood and femur lead concentrations in PbrR-displayed E. coli groups compared to the control. These results open up the possibility for the removal of toxic metal ions in vivo using engineered microorganisms as adsorbents.

Keywords

Male, Serum, Science, Q, Cell Membrane, R, Biological Availability, Pilot Projects, Hydrogen-Ion Concentration, Article, Intestines, Mice, Bacterial Proteins, Lead, Escherichia coli, Medicine, Animals, Femur, Genetic Engineering, Biotransformation, Bacterial Outer Membrane Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
Green
gold