Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Research on BP imaging algorithm parallelization using C6678 DSPS

Authors: Jiayun Zhao Jiayun Zhao; Yuan Yuan Yuan Yuan; Jinghua Wang Jinghua Wang; Ye Jin Ye Jin;

Research on BP imaging algorithm parallelization using C6678 DSPS

Abstract

Compared to the traditional SAR imaging algorithm, Back Projection(BP) algorithm is an accurate point-by-point imaging radar algorithm based on time-domain, with simple principle and without any approximation error in the imaging process. However, because of intensive computation and low efficiency, it's a new challenge to storage to capacity, throughput and processing ability of DSPs, a single DSP is not enough to meet these demands. So a parallel implementation method of BP algorithm based on TMS320C6678 DSP is proposed in this paper.We put forward a large point FFT multi-core parallel processing method on 2/4/8 cores what is frequently used in BP algorithm, and a multi-core synchronization method based on distributed memory. Finally using the measured data, we verify the parallel method can greatly enhance the multi-core parallelism, and the real-time performance of BP algorithm has been significantly improved.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!