Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Diabetologiaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Diabetologia
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Diabetologia
Article . 2005 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Diabetologia
Article . 2005
versions View all 2 versions
addClaim

Glucose-induced up-regulation of CD36 mediates oxidative stress and microvascular endothelial cell dysfunction

Authors: H, Farhangkhoee; Z A, Khan; Y, Barbin; S, Chakrabarti;

Glucose-induced up-regulation of CD36 mediates oxidative stress and microvascular endothelial cell dysfunction

Abstract

Hyperglycaemia-induced oxidative stress is implicated in the pathogenesis of chronic diabetic complications. Glucose-mediated oxidation of LDL may result in increased oxidative stress and vascular endothelial cell dysfunction via interaction with a cell surface scavenger receptor, CD36. In this study, we investigated the role of CD36 in cultured microvascular endothelial cells (MVECs) and in the heart by using an animal model of chronic diabetes.Cultured MVECs were subjected to varying glucose concentrations and assayed for alteration in CD36 gene expression and protein levels. To assess for oxidised LDL (ox-LDL) uptake, MVECs exposed to low and high glucose were treated with ox-LDL (80 microg/ml), a ligand for CD36. Haem oxygenase-1 (HO-1) and endothelin-1 (ET-1) induction, as well as oxidative stress were determined. The role of glucose-induced CD36 alteration in ox-LDL uptake was also assayed following post-transcriptional CD36 gene silencing. For in vivo studies, CD36 mRNA and oxidative DNA and protein damage were measured in heart tissues of 1-month-old diabetic Sprague-Dawley rats.We found that glucose increased CD36 mRNA and protein levels in MVECs. High levels of glucose also augmented ox-LDL uptake, in association with increasing HO-1 and ET-1 mRNA levels. CD36 gene silencing prevented glucose-induced CD36 alteration, reduced ox-LDL uptake, and prevented HO-1 and ET-1 up-regulation. Similar to in vitro studies, diabetic heart tissues exhibited increased CD36 mRNA levels and increased oxidative DNA and protein damage.Our results provide evidence that up-regulation of CD36 may have a role in increasing oxidative stress in MVECs and the heart in chronic diabetes.

Related Organizations
Keywords

CD36 Antigens, Male, DNA, Complementary, Reverse Transcriptase Polymerase Chain Reaction, Microcirculation, Heart, Diabetes Mellitus, Experimental, Rats, Rats, Sprague-Dawley, Oxidative Stress, Glucose, Gene Expression Regulation, Antigens, CD, Animals, Humans, Cells, Cultured

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Top 10%
bronze