Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computerized curve fitting in the analysis of hydrogen gas clearance curves

Authors: Paul H. Guth; T. Reedy; F. W. Leung; Edward H. Livingston;

Computerized curve fitting in the analysis of hydrogen gas clearance curves

Abstract

Hydrogen gas clearance curves obtained from the rat gastric corpus were digitized into a computer and then analyzed by three methods: 1) linear regression of log-transformed data, 2) direct curve fitting with a modified Gauss-Newton nonlinear regression algorithm, and 3) Zierler's height-over-area algorithm. For linear regression of log-transformed data, if the initial base-line estimate was inaccurate or normal amounts of experimental noise were present, the log-transformed data was skewed, leading to deviation of the regression line and incorrect estimation of blood flow. By utilization of the direct-fit routine, the initial estimate of the parameters or experimental noise had little influence on the blood flow determination because of iterative improvement of the parameters. In a study of isoproterenol-stimulated gastric blood flow, Zierler's algorithm underestimated the blood flow estimate. We conclude that analysis of hydrogen gas clearance curves by linear regression of log-transformed data or by Zierler's algorithm may potentially introduce errors in blood flow estimates that may be avoided by analysis with a direct-fitting, nonlinear regression algorithm.

Related Organizations
Keywords

Male, Rats, Inbred Strains, Models, Theoretical, Rats, Gastric Mucosa, Regional Blood Flow, Methods, Animals, Regression Analysis, Algorithms, Mathematics, Hydrogen

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!