Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Endocrinol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Endocrinology
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Prolactin and ErbB4/HER4 Signaling Interact via Janus Kinase 2 to Induce Mammary Epithelial Cell Gene Expression Differentiation

Authors: Rebecca S, Muraoka-Cook; Melissa, Sandahl; Debra, Hunter; Leah, Miraglia; H Shelton, Earp;

Prolactin and ErbB4/HER4 Signaling Interact via Janus Kinase 2 to Induce Mammary Epithelial Cell Gene Expression Differentiation

Abstract

Differentiation of mammary epithelium in vivo requires signaling through prolactin and ErbB4/HER4-dependent mechanisms. Although stimulation of either the prolactin receptor or ErbB4/HER4 results in activation of the transcription factor signal transducer and activator of transcription 5A (STAT5A) and induction of lactogenic differentiation, how these pathways intersect is unknown. We show herein that prolactin signaling in breast cells cooperates with and is substantially enhanced by the receptor tyrosine kinase ErbB4/HER4. Prolactin and the ErbB4/HER4 ligand heparin-binding epidermal growth factor each induced STAT5A tyrosine phosphorylation and nuclear translocation; each pathway required the intracellular tyrosine kinase Janus kinase 2 (JAK2). We found that full prolactin-mediated STAT5A activation and binding to the endogenous beta-casein promoter required ErbB4/HER4 but did not require ErbB1/epidermal growth factor receptor. For example, prolactin-induced STAT5A activity was markedly diminished in cells overexpressing kinase inactive HER4, in cells transfected with small interfering RNAs to specifically knock down endogenous ErbB4/HER4 expression and in cells treated with a small molecule inhibitor that targets ErbB4 kinase. Interestingly, prolactin caused ErbB4/HER4 tyrosine phosphorylation in a JAK2 kinase-dependent manner. Finally, prolactin receptor, ErbB4/HER4, and JAK2 were coimmunoprecipitated from prolactin-treated but not untreated cells. These results suggest that prolactin signaling engages the ErbB4 pathway via JAK2 and that ErbB4 provides an important component of STAT5A-dependent lactogenic differentiation; this pathway integration may help explain the similar deficit in mammary development observed in gene-targeted mice deficient in prolactin receptor, JAK2, ErbB4, or STAT5A.

Keywords

Receptor, ErbB-4, Receptors, Prolactin, Cell Differentiation, Epithelial Cells, Janus Kinase 2, Cell Line, Prolactin, Enzyme Activation, ErbB Receptors, Mice, Mammary Glands, Animal, Gene Expression Regulation, Pregnancy, STAT5 Transcription Factor, Animals, Intercellular Signaling Peptides and Proteins, Female, Phosphorylation, Heparin-binding EGF-like Growth Factor, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Average
bronze