Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Gene Therapyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cancer Gene Therapy
Article . 2000 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Vaccinia as a vector for tumor-directed gene therapy: Biodistribution of a thymidine kinase-deleted mutant

Authors: M, Puhlmann; C K, Brown; M, Gnant; J, Huang; S K, Libutti; H R, Alexander; D L, Bartlett;

Vaccinia as a vector for tumor-directed gene therapy: Biodistribution of a thymidine kinase-deleted mutant

Abstract

Tumor-directed gene therapy, such as "suicide gene" therapy, requires high levels of gene expression in a high percentage of tumor cells in vivo to be effective. Current vector strategies have been ineffective in achieving these goals. This report introduces the attenuated (thymidine kinase (TK)-negative) replication-competent vaccinia virus (VV) as a potential vector for tumor-directed gene therapy by studying the biodistribution of VV in animal tumor models. A TK-deleted recombinant VV (Western Reserve strain) expressing luciferase on a synthetic promoter was constructed. Luciferase activity was measured in vitro after transduction of a variety of human and murine tumor cell lines and in vivo after intraperitoneal (i.p.) delivery in C57BL/6 mice with 7-day i.p. tumors (10(6) MC-38 cells). Three other in vivo tumor models were examined for tumor-specific gene expression after intravenous delivery of VV (human melanoma in nude mice, adenocarcinoma liver metastasis in immunocompetent mice, and subcutaneous sarcoma in the rat). In addition, a replication-incompetent vaccinia (1 microg of psoralen and ultraviolet light, 365 nm, 4 minutes) was tested in vitro and in vivo and compared with active virus. Luciferase activity in i.p. tumors at 4 days after i.p. injection of VV was >7000-fold higher than lung, >3000-fold higher than liver, and >250-fold higher than ovary. In addition, intravenous injection of VV resulted in markedly higher tumor luciferase activity compared with any other organ in every model tested (up to 188,000-fold higher than liver and 77,000-fold higher than lung). Inactivation of the virus resulted in negligible gene expression in vivo. In summary, VV has a high transduction efficiency in tumor cells with high levels of gene expression. The results suggest a selective in vivo replication of TK-deleted VV in tumor cells. Replication competent, TK-deleted VV appears to be an ideal vector for testing the in vivo delivery of toxic genes to tumor cells.

Keywords

Photosensitizing Agents, Genetic Vectors, Ficusin, Gene Expression, Mice, Nude, Genetic Therapy, Neoplasms, Experimental, Transfection, Thymidine Kinase, Rats, Inbred F344, Rats, Mice, Inbred C57BL, Disease Models, Animal, Mice, Mutation, Biomarkers, Tumor, Animals, Humans, Luciferases, HT29 Cells

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    148
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
148
Top 10%
Top 10%
Top 10%
bronze