Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Pharmacolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Pharmacology
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Reciprocal Signaling between the Transcriptional Co-Factor Eya2 and Specific Members of the Gαi Family

Authors: Alan C, Embry; Jennifer L, Glick; Maurine E, Linder; Patrick J, Casey;

Reciprocal Signaling between the Transcriptional Co-Factor Eya2 and Specific Members of the Gαi Family

Abstract

As part of a program to elucidate signaling processes controlled by the heterotrimeric G protein Galphaz, a human fetal brain cDNA library was screened for proteins that specifically interact with the activated form of Galphaz. One of the most-encountered molecules in this screen was Eya2, a member of the Eyes absent family of proteins. Mammalian Eya proteins are predominantly cytosolic proteins that are known to interact with members of the Sine oculis (Six) family of homeodomain transcription factors. This interaction facilitates the translocation of Eya into the nucleus, where the Eya/Six complex regulates transcription during critical stages of embryonic development. In vitro binding studies confirmed that Galphaz interacts with Eya2 in an activation-dependent fashion; furthermore, most other members of the Galphai family including Galphai1, Galphai2, and Galphai3 were found to interact with Eya2. It is interesting that one of the most abundant Galphai proteins, Galphao, did not interact with Eya2. Coexpression of the activated forms of Galphai1, Galphai2, and Galphai3, but not Galphao, with Eya2 recruited Eya2 to the plasma membrane, prevented Eya2 translocation into the nucleus, and abrogated Eya2/Six4-mediated transcription. In addition, Eya2 impinged on G protein-mediated signaling, as evidenced by its ability to relieve Galphai2-mediated inhibition of adenylyl cyclase. These results demonstrate that the interaction between the Galphai proteins and Eya2 may impact on seemingly disparate regulatory events involving both classes of proteins.

Related Organizations
Keywords

Homeodomain Proteins, Transcriptional Activation, Cell Membrane, Intracellular Signaling Peptides and Proteins, Nuclear Proteins, GTP-Binding Protein alpha Subunits, Gi-Go, Heterotrimeric GTP-Binding Proteins, Adenylyl Cyclase Inhibitors, Trans-Activators, Animals, Humans, Protein Tyrosine Phosphatases, Cells, Cultured, Adenylyl Cyclases, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!