Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1016/bs.mie...
Part of book or chapter of book . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

In Vitro Analysis of Cyanobacterial Nonheme Iron-Dependent Aliphatic Halogenases WelO5 and AmbO5

Authors: Xinyu, Liu;

In Vitro Analysis of Cyanobacterial Nonheme Iron-Dependent Aliphatic Halogenases WelO5 and AmbO5

Abstract

Aliphatic carbon-halogen (C-X) bonds are prevalent in modern pharmaceuticals and bioactive natural products. Three distinct chemical strategies are known in Nature to generate these structural motifs. The first is via the nucleophilic substitution at a prefunctionalized electrophilic carbon center with a halide anion (X-), known for the S-adenosyl-l-methionine-dependent halogenases. The second is via the electrophilic activation of an alkene or its equivalent by a halenium ion (X+) donor, known for the haloperoxidases and flavin-dependent halogenases. The third is via the direct functionalization of an unactivated aliphatic C-H bond with a halogen radical (X) equivalent, known for the 2-oxo-glutarate and nonheme iron-dependent halogenases. Due to the ubiquitous nature of aliphatic C-H groups in organic molecules, transformations that permit chemo-, regio-, and stereo-selective modification(s) at an unactivated sp3-carbon center have been a long sought-after goal in chemical science. Two nonheme iron-dependent halogenases, WelO5 and AmbO5 involved in the biogenesis of cyanobacterial hapalindole-type alkaloids, have been recently shown able to perform this type of challenging transformation. In this chapter, experimental details for the in vitro reconstitution of WelO5 and AmbO5 enzymatic activities are presented.

Related Organizations
Keywords

Bacterial Proteins, Cyanobacteria, Oxidoreductases, Biochemistry, Indole Alkaloids

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!