Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Science
Article . 2013 . Peer-reviewed
Data sources: Crossref
Science
Article . 2013
versions View all 4 versions
addClaim

Self-Assembling Cages from Coiled-Coil Peptide Modules

Authors: Fletcher, Jordan M; Harniman, Robert L; Barnes, Frederick R H; Boyle, Aimee L; Collins, Andrew; Mantell, Judith; Sharp, Thomas H; +7 Authors

Self-Assembling Cages from Coiled-Coil Peptide Modules

Abstract

From Coils to Cages Self-assembly strategies that mimic protein assembly, such as the formation of viral coats, often begin with simpler peptide assemblies. Fletcher et al. (p. 595 , published online 11 April; see the Perspective by Ardejani and Orner ) designed two coiled-coil peptide motifs, a heterodimer, and a homotrimer. Both peptides contained cysteine residues and could link through disulfide bonds, so that the trimer could form the vertices of a hexagonal network and the dimer its edges. However, these components are flexible and, rather than form extended sheets, they closed to form particles ∼100 nanometers in diameter.

Country
United Kingdom
Related Organizations
Keywords

Models, Molecular, Protein Structure, Secondary, Protein Folding, Protein Conformation, /dk/atira/pure/core/keywords/biodesign_SRI, Molecular Dynamics Simulation, Electron, Protein Structure, Secondary, Models, Scanning, Microscopy, Circular Dichroism, Molecular, 500, 540, Nanostructures, Microscopy, Electron, Scanning, Thermodynamics, synthetic biology, name=Bristol BioDesign Institute, Protein Multimerization, Peptides

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    461
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
461
Top 1%
Top 1%
Top 0.1%
Green
bronze
Funded by
Related to Research communities