
pmid: 26833082
Although association of circadian clock properties with the timing of rhythmic behaviors (chronotype) has been extensively documented over several decades, recent studies on mice and Drosophila have failed to observe such associations. In addition, studies on human populations that examined effects of clock gene mutations/polymorphisms on chronotypes have revealed disparate and often contradictory results, thereby highlighting the need for a suitable model organism to study circadian clocks’ role in chronotype regulation, the lack of which has hindered exploration of the underlying molecular-genetic bases. We used a laboratory selection approach to raise populations of Drosophila melanogaster that emerge in the morning ( early) or in the evening ( late), and over 14 years of continued selection, we report clear divergence of their circadian phenotypes. We also assessed the molecular correlates of early and late emergence chronotypes and report significant divergence in transcriptional regulation, including the mean phase, amplitude and levels of period ( per), timeless ( tim), clock ( clk) and vrille ( vri) messenger RNA (mRNA) expression. Corroborating some of the previously reported light-sensitivity and oscillator network coupling differences between the early and the late populations, we also report differences in mRNA expression of the circadian photoreceptor cryptochrome ( cry) and in the mean phase, amplitude and levels of the neuropeptide pigment-dispersing factor (PDF). These results provide the first-ever direct evidence for divergent evolution of molecular circadian clocks in response to selection imposed on an overt rhythmic behavior and highlight early and late populations as potential models for chronotype studies by providing a preliminary groundwork for further exploration of molecular-genetic correlates underlying circadian clock-chronotype association.
Light, Photoperiod, Neuropeptides, Circadian Rhythm, Cryptochromes, Drosophila melanogaster, Phenotype, Gene Expression Regulation, Circadian Clocks, Animals, Drosophila Proteins
Light, Photoperiod, Neuropeptides, Circadian Rhythm, Cryptochromes, Drosophila melanogaster, Phenotype, Gene Expression Regulation, Circadian Clocks, Animals, Drosophila Proteins
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
