Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao University of Southe...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bone
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A joined role of canopy and reversal cells in bone remodeling — Lessons from glucocorticoid-induced osteoporosis

Authors: Jensen, Pia Rosgaard; Andersen, Thomas Levin; id_orcid 0000-0002-6981-7276; Hauge, Ellen Margrethe; Bollerslev, Jens; Delaissé, Jean Marie;

A joined role of canopy and reversal cells in bone remodeling — Lessons from glucocorticoid-induced osteoporosis

Abstract

Successful bone remodeling demands that osteoblasts restitute the bone removed by osteoclasts. In human cancellous bone, a pivotal role in this restitution is played by the canopies covering the bone remodeling surfaces, since disruption of canopies in multiple myeloma, postmenopausal- and glucocorticoid-induced osteoporosis is associated with the absence of progression of the remodeling cycle to bone formation, i.e., uncoupling. An emerging concept explaining this critical role of canopies is that they represent a reservoir of osteoprogenitors to be delivered to reversal surfaces. In postmenopausal osteoporosis, this concept is supported by the coincidence between the absence of canopies and scarcity of cells on reversal surfaces together with abortion of the remodeling cycle. Here we tested whether this concept holds true in glucocorticoid-induced osteoporosis. A histomorphometric analysis of iliac crest biopsies from patients exposed to long-term glucocorticoid treatment revealed a subpopulation of reversal surfaces corresponding to the characteristics of arrest found in postmenopausal osteoporosis. Importantly, these arrested reversal surfaces were devoid of canopy coverage in almost all biopsies, and their prevalence correlated with a deficiency in bone forming surfaces. Taken together with the other recent data, the functional link between canopies, reversal surface activity, and the extent of bone formation surface in postmenopausal- and glucocorticoid-induced osteoporosis, supports a model where bone restitution during remodeling demands recruitment of osteoprogenitors from the canopy onto reversal surfaces. These data suggest that securing the presence of functional local osteoprogenitors deserves attention in the search of strategies to prevent the bone loss that occurs during bone remodeling in pathological situations.

Country
Denmark
Keywords

Glucocorticoids/adverse effects, Bone remodeling compartment canopy, Bone remodeling, Coupling, Glucocorticoid, Reversal phase, Humans, Osteoporosis, Bone Remodeling, Osteoporosis/chemically induced, Glucocorticoids

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!