Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Remote Sensingarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Remote Sensing
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Remote Sensing
Article . 2022
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

Evaluating the Accuracy and Spatial Agreement of Five Global Land Cover Datasets in the Ecologically Vulnerable South China Karst

Authors: Pengyu Liu; Jie Pei; Han Guo; Haifeng Tian; Huajun Fang; Li Wang 0055;

Evaluating the Accuracy and Spatial Agreement of Five Global Land Cover Datasets in the Ecologically Vulnerable South China Karst

Abstract

Accurate and reliable land cover information is vital for ecosystem management and regional sustainable development, especially for ecologically vulnerable areas. The South China Karst, one of the largest and most concentrated karst distribution areas globally, has been undergoing large-scale afforestation projects to combat accelerating land degradation since the turn of the new millennium. Here, we assess five recent and widely used global land cover datasets (i.e., CCI-LC, MCD12Q1, GlobeLand30, GlobCover, and CGLS-LC) for their comparative performances in land dynamics monitoring in the South China Karst during 2000–2020 based on the reference China Land Use/Cover Database. The assessment proceeded from three aspects: areal comparison, spatial agreement, and accuracy metrics. Moreover, divergent responses of overall accuracy with regard to varying terrain and geomorphic conditions have also been quantified. The results reveal that obvious discrepancies exist amongst land cover maps in both area and spatial patterns. The spatial agreement remains low in the Yunnan–Guizhou Plateau and heterogeneous mountainous karst areas. Furthermore, the overall accuracy of the five datasets ranges from 40.3% to 52.0%. The CGLS-LC dataset, with the highest accuracy, is the most accurate dataset for mountainous southern China, followed by GlobeLand30 (51.4%), CCI-LC (50.0%), MCD12Q1 (41.4%), and GlobCover (40.3%). Despite the low overall accuracy, MCD12Q1 has the best accuracy in areas with an elevation above 1200 m or a slope greater than 25°. With regard to geomorphic types, accuracy in non-karst areas is evidently higher than in karst areas. Additionally, dataset accuracy declines significantly (p < 0.05) with an increase in landscape heterogeneity in the region. These findings provide useful guidelines for future land cover mapping and dataset fusion.

Keywords

Science, Q, karst, karst; land cover; spatial agreement; accuracy assessment, land cover, spatial agreement, accuracy assessment

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%
gold