
Let $\mathbf{X}$ be a $p \times f_2$ matrix variate $(p \leqq f_2)$ and $\mathbf{Y}$ a $p \times f_1$ matrix variate $(p \leqq f_1)$ and the columns be all independently normally distributed with covariance matrix $\mathbf{\Sigma}, E(\mathbf({X}) = \mathbf{M}$ and $E(\mathbf{Y}) = \mathbf{0}$. Let $0 j}(l_i - l_j).$ In this paper the distribution of Pillai's $V^{(p)}$ criterion which is the trace of $\mathbf{L}$, [5], [6] and that of Roy's largest root criterion, $l_p$, [8], [10], have been obtained in series forms and certain constants involved in the series tabulated. In addition, the first four moments of $V^{(p)}$ are also obtained in the linear case, illustrating further use of some of the tabulations.
statistics
statistics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
