Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Analytica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Analytical Oncology
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Targeting Mantle Cell Lymphoma with Anti-SYK Nanoparticles

Authors: Ingrid, Cely; Seang, Yiv; Qian, Yin; Anoush, Shahidzadeh; Li, Tang; Jianjun, Cheng; Fatih M, Uckun;

Targeting Mantle Cell Lymphoma with Anti-SYK Nanoparticles

Abstract

 The pentapeptide mimic 1,4-bis(9-O-dihydroquinidinyl)phthalazine / hydroquinidine 1,4-phathalazinediyl diether ("compound 61") (C-61) is the first reported inhibitor targeting the P-site of SYK. Here we report a nanotechnology platform to target C-61 to mantle cell lymphoma (MCL) cells. Liposomal nanoparticles (NP) loaded with C-61 were prepared using the standard thin film evaporation method. The entrapment of C-61 was obtained using the pH gradient procedure with lactobionic acid (LBA) being used as a low pH buffer inside the NP. Formulation F6A was selected as a lead candidate for further biological testing. The average diameter, zeta potential and C-61 content of the F6A NP was 40 nm, 0.1 mV, and 12.6 mg/ml, respectively. F6A induces apoptosis in SYK+ but not SYK- leukemia/lymphoma cells. We also evaluated the cytotoxic activity of F6A in the context of an in vitro artificial bone marrow assay platform based on a 3D scaffold with inverted colloidal crystal geometry mimicking the structural topology of actual bone marrow matrix. The ability of C-61 to induce apoptosis in ALL-1 cells was not adversely affected by the scaffolds. F6A, but not the drug-free NP formulation F6B, caused apoptosis of MCL cell lines MAVER-1 and MINO within 24h. Further development of rationally designed SYK inhibitors and their nanoscale formulations may provide the foundation for therapeutic innovation against a broad spectrum of lymphoid malignancies, including MCL.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
bronze
Related to Research communities
Cancer Research