
doi: 10.1042/bst20150041
pmid: 26551707
The nuclear erythroid 2-like 2 transcription factor (NRF2), is a major regulator of cellular redox balance. Although NRF2 activation is generally regarded as beneficial to human health, recent studies have identified that sustained NRF2 activation is over-represented in many cancers. This raises the question regarding the role of NRF2 activation in the development and progression of those cancers. This review focuses on the mechanisms and the effects of NRF2 activation in two hereditary cancer predisposition syndromes: hereditary leiomyomatosis and renal cell cancer (HLRCC) and hereditary tyrosinemia type 1 (HT1). Because the cancer initiating mutations in these hereditary syndromes are well defined, they offer a unique opportunity to explore the roles of NRF2 activation in the early stages of carcinogenesis. Over the years, a variety of approaches have been utilized to study the biology of HLRCC and HT1. In HLRCC, in vitro studies have demonstrated the importance of NRF2 activation in sustaining cancer cell proliferation. In the mouse model of HT1 however, NRF2 activation seems to protect cells from malignant transformation. In both HT1 and HLRCC, NRF2 activation promotes the clearance of electrophilic metabolites, enabling cells to survive cancer-initiating mutations. Biological insights gained from the hereditary syndromes’ studies may shed light on to the roles of NRF2 activation in sporadic tumours.
Skin Neoplasms, NF-E2-Related Factor 2, Tyrosinemias, Gene Expression Regulation, Neoplastic Syndromes, Hereditary, Leiomyomatosis, Mutation, Uterine Neoplasms, Humans, Cell Proliferation
Skin Neoplasms, NF-E2-Related Factor 2, Tyrosinemias, Gene Expression Regulation, Neoplastic Syndromes, Hereditary, Leiomyomatosis, Mutation, Uterine Neoplasms, Humans, Cell Proliferation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
