Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transformation of a κ-Opioid Receptor Antagonist to a κ-Agonist by Transfer of a Guanidinium Group from the 5‘- to 6‘-Position of Naltrindole

Authors: S K, Sharma; R M, Jones; T G, Metzger; D M, Ferguson; P S, Portoghese;

Transformation of a κ-Opioid Receptor Antagonist to a κ-Agonist by Transfer of a Guanidinium Group from the 5‘- to 6‘-Position of Naltrindole

Abstract

The importance of the indole scaffold of GNTI 3 in directing its address (5'-guanidinium group) to associate with the Glu297 residue of the kappa-opioid receptor was investigated by the synthesis and biological evaluation of its 4'- (4a), 6'- (4b), and 7'- (4c) regioisomers. The finding that only the 5'-regioisomer (GNTI) possessed potent kappa-opioid antagonist activity and high affinity at kappa-receptors illustrates the importance of the 5'-position in orienting the guanidinium group to the proper recognition locus (Glu 297) for potent kappa-antagonist activity. The discovery that the 6'-regioisomer of GNTI was a potent kappa-agonist, together with the results of site-directed mutagenesis studies that are consistent with association between the 6'-guanidinium group and Glu297, suggest that the transition from an inactive to an active state of the kappa-receptor involves a conformational change of TM6. We propose that association of the 6'-guanidinium group of 4b with Glu297 promotes axial rotational motion of transmembrane helix VI which leads to receptor activation via a conformational change of inner loop 3.

Related Organizations
Keywords

Narcotic Antagonists, Receptors, Opioid, kappa, Guinea Pigs, Molecular Conformation, Muscle, Smooth, In Vitro Techniques, Transfection, Naltrexone, Cell Line, Rats, Structure-Activity Relationship, Mutagenesis, Site-Directed, Animals, Humans, Cloning, Molecular, Guanidine, Muscle Contraction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!