
Background: Reperfusion injury accounts for a significant portion of myocardial damage in acute coronary syndromes. Autophagy, a process of cell catabolism, plays a vital role in the heart’s response to stress. We have reported that re-induction of ischemia/reperfusion (I/R)-suppressed cardiomyocyte autophagy with histone deacetylase (HDAC) inhibitors affords significant cardioprotection. However, as HDACs govern many processes and may have off-target effects, we set out to modulate autophagy in a manner independent of HDAC activity. Here, we hypothesized that induction of autophagy with a novel agent, Tat-Beclin, at the time of reperfusion, will reduce I/R injury and rescue cardiac function. Methods: Wild type and ATG7 (protein required for autophagic flux) knockout mice were randomized among 3 treatment groups prior to surgical I/R injury [45 min LAD artery ligation; 24h reperfusion]: vehicle control (VC), Tat-Scrambled (TS), or Tat-Beclin (TB). Each agent was delivered at coronary reperfusion. To define molecular mechanisms, cultured adult and neonatal rat ventricular cardiomyocytes (ARVMs/NRVMs) were subjected to simulated I/R. Results: Induction of cardiomyocyte autophagy at reperfusion reduced infarct size 20.1% (±6.3%, n=23, p<0.02 vs VC). This treatment was associated with improved systolic function (declines in fractional shortening: 19.8±3.7% VC; 18.7±2.1% TS; 8.5±1.7% TB, n=11, p<0.01 vs VC). In NRVMs subjected to I/R injury, cell death was reduced 41% (±6%, n=12, p<0.001 vs VC). Improvements correlated with increased autophagic flux measured by the marker LC3-II, particularly at the infarct border zone. Additional data suggested that autophagy rescues I/R injury through reduction of oxidative stress. ATG7 KO mice or NRVM depleted of ATG7 (RNAi) manifested significantly less cardioprotection. Conclusion: Direct induction of cardiomyocyte autophagy reduces infarct size and declines in contractile function. Autophagy rescues I/R injury in part through reduction of oxidative stress. Critically, this cardioprotection was observed when intervention occurred at the time of reperfusion, the clinically relevant context.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
