<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1002/bies.1083
pmid: 11462211
AbstractMost of our current knowledge of olfactory associative learning in Drosophila comes from the behavioral and molecular analysis of mutants that fail to learn. The identities of the genes affected in these mutants implicate new signaling pathways as mediators of associative learning. The expression patterns of these genes provide insight into the neuroanatomical areas that underlie learning. In recent years, there have been great strides in understanding the molecular and neuroanatomical basis for olfaction in insects. It is now clear that much of the association between the conditioned stimuli and the unconditioned stimuli in olfactory learning occurs within mushroom bodies — third order olfactory neurons within the central brain. In this review, we discuss the nature of the behavioral tasks, the molecules, and the neuronal circuits involved in olfactory learning in Drosophila. BioEssays 23:571–581, 2001. © 2001 John Wiley & Sons, Inc.
Behavior, Animal, Olfactory Nerve, Animals, Learning, Drosophila
Behavior, Animal, Olfactory Nerve, Animals, Learning, Drosophila
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 128 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |