
We consider full motion state sensing of a rigid open-chain multi-body linkage assembly using rate gyros and linear accelerometers. The research is built upon micro-electromechanical systems (MEMS) components for low-cost “strap-down” implementation. Our emphasis is on direct lag-free joint angular acceleration sensing, for which a novel multi-MEMS configuration is motivated by motion control requirements. By using the multi-MEMS configuration, the bandwidth of the angular acceleration sensed is mostly proportional to the physical distances of linear accelerometers. The related joint position sensing, which is robust against linear and angular motion, is founded on the complementary and Kalman filtering principles for exclusive low delay. Experiments on a robotic vertically mounted three-link planar arm demonstrate the advantage of our key theoretical finding.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
