Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gastrointestinal Factors Influencing Zinc Absorption and Homeostasis

Authors: Robert Cousins;

Gastrointestinal Factors Influencing Zinc Absorption and Homeostasis

Abstract

Diet-derived luminal factors have a major influence on zinc available for uptake across the apical membrane of enterocytes. Malabsorption and possibly intestinal microbiota limit this zinc availability. The transporter ZIP4 is expressed along the entire gastrointestinal tract and acts as a major processor of dietary zinc for loading into enterocytes from the apical membrane. Zip4 and other Zip family genes expressed in the gastrointestinal tract are up-regulated in periods of dietary zinc restriction. This provides for powerful homeostatic control. The transporter ZIP14 is up-regulated along the entire gastrointestinal tract by proinflammatory conditions. Intracellular transporters such as ZnT7, influence the transcellular movement of zinc across the enterocyte. Metallothionein, an intracellular metal buffer, and the transporter ZnT1 at the basolateral membrane, regulate the amount of zinc released to the portal circulation for systemic distribution. Pancreatic release of zinc by acinar cells is through the secretory process and apical membrane and involves transporters ZnT2 and ZnT1, respectively. Expression of both transporters is zinc-responsive. Enterocytes and acinar cells constitutively express Zip5 at the basolateral membrane, where it may serve as a monitor of zinc status.

Related Organizations
Keywords

Gastrointestinal Tract, Zinc, Intestinal Absorption, Homeostasis, Humans, Cation Transport Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    105
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
105
Top 10%
Top 10%
Top 10%
bronze