Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phosphorylation of Runx1 at Ser249, Ser266, and Ser276 is dispensable for bone marrow hematopoiesis and thymocyte differentiation

Authors: Masashi Tachibana; Atsushi Nakajima; Ichiro Taniuchi; Issay Kitabayashi; Sawako Muroi; Takuo Katsumoto; Sogo Nishimoto; +1 Authors

Phosphorylation of Runx1 at Ser249, Ser266, and Ser276 is dispensable for bone marrow hematopoiesis and thymocyte differentiation

Abstract

Runx1, one of three mammalian runt-domain transcription factor family proteins, is essential for definitive hematopoiesis. Based on transfection assays, phosphorylation of Runx1 at the three serine residues, Ser249, Ser266, and Ser276, was thought to be important for trans-activation activity of Runx1. By using "knock-in" gene targeting, we generated mouse strains expressing mutant Runx1 protein that harbored a combined serine-to-alanine substitution at either of two residues, Ser249/Ser266 or Ser249/Ser276. Either mutation resulted in a lack of major phosphorylated form of Runx1. However, while loss of definitive hematopoiesis and impaired thymocyte differentiation was observed following the loss of Runx1, these phenotypes were rescued in those mice lacking the major phosphorylated form of Runx1. These results not only challenge the predicted regulation of Runx1 activity by phosphorylation at these serine residues, but also reaffirm the effectiveness of "knock-in" mutagenesis as a powerful tool for addressing the physiological relevance of post-translation modifications.

Keywords

Mice, Knockout, Bone Marrow Cells, Cell Differentiation, Thymus Gland, Hematopoiesis, Mice, Core Binding Factor Alpha 2 Subunit, Serine, Animals, Lymphocytes, Phosphorylation, Cells, Cultured

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!