Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Briefings in Bioinfo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Briefings in Bioinformatics
Article . 2022 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

dynDeepDRIM: a dynamic deep learning model to infer direct regulatory interactions using time-course single-cell gene expression data

Authors: Yu, Xu; Jiaxing, Chen; Aiping, Lyu; William K, Cheung; Lu, Zhang;

dynDeepDRIM: a dynamic deep learning model to infer direct regulatory interactions using time-course single-cell gene expression data

Abstract

AbstractTime-course single-cell RNA sequencing (scRNA-seq) data have been widely used to explore dynamic changes in gene expression of transcription factors (TFs) and their target genes. This information is useful to reconstruct cell-type-specific gene regulatory networks (GRNs). However, the existing tools are commonly designed to analyze either time-course bulk gene expression data or static scRNA-seq data via pseudo-time cell ordering. A few methods successfully utilize the information from multiple time points while also considering the characteristics of scRNA-seq data. We proposed dynDeepDRIM, a novel deep learning model to reconstruct GRNs using time-course scRNA-seq data. It represents the joint expression of a gene pair as an image and utilizes the image of the target TF–gene pair and the ones of the potential neighbors to reconstruct GRNs from time-course scRNA-seq data. dynDeepDRIM can effectively remove the transitive TF–gene interactions by considering neighborhood context and model the gene expression dynamics using high-dimensional tensors. We compared dynDeepDRIM with six GRN reconstruction methods on both simulation and four real time-course scRNA-seq data. dynDeepDRIM achieved substantially better performance than the other methods in inferring TF–gene interactions and eliminated the false positives effectively. We also applied dynDeepDRIM to annotate gene functions and found it achieved evidently better performance than the other tools due to considering the neighbor genes.

Related Organizations
Keywords

Deep Learning, Sequence Analysis, RNA, Gene Expression Profiling, Gene Expression, Single-Cell Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
gold