
handle: 10773/27889
Single‐phase strontium ferromolybdate (Sr2FeMoO6–δ) samples with different degrees of the superstructural ordering of the Fe/Mo cations (P) are obtained from partially reduced SrFeO3–х, SrMoO4 precursors by the solid‐state technology. The study of the temperature dependences of the magnetization measured in the field‐cooling and zero‐field‐cooling modes indicated an inhomogeneous magnetic state of the samples. The presence of magnetic regions of different nature has also been revealed by the small‐angle neutron scattering. For the Sr2FeMoO6–δ samples with different P values and for all values of the magnetic field induction up to 1.5 T and of the scattering vector in the interval 0.1 > q > 0.002 Å−1, the analytical dependence I ∼ q–α obeys the Porod law (α ≈ 4), which corresponds to an object with a smooth and well‐marked surface and polydisperse grain size. Deviations from the Porod law in the q > 0.1 Å−1 region and a weakening of the neutron scattering in applied magnetic fields may be ascribed to magnetic inhomogeneities with diameters D < 6 nm, which are partially destroyed/oriented by magnetic fields В ≥ 1.5 T. It is established that the magnetic homogeneity of the Sr2FeMoO6–δ compound is enhanced with increasing superstructural ordering of the Fe/Mo cations.
Strontium ferromolybdate, Superstructure ordering, Small-angle neutron scattering, Condensed Matter Physics, Magnetization, Oxygen non-stoichiometry, Electronic, Optical and Magnetic Materials
Strontium ferromolybdate, Superstructure ordering, Small-angle neutron scattering, Condensed Matter Physics, Magnetization, Oxygen non-stoichiometry, Electronic, Optical and Magnetic Materials
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
