Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Open Repository and ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Endocrinology
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Endocrinology
Article . 2013 . Peer-reviewed
Data sources: Crossref
Endocrinology
Article . 2013
Endocrinology
Article . 2013
Data sources: KNAW Pure
Endocrinology
Article . 2013
Data sources: Pure Amsterdam UMC
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Two Kisspeptin Neuronal Populations Are Differentially Organized and Activated by Estradiol in Mice

Authors: Brock, Olivier; Bakker, Julie;

The Two Kisspeptin Neuronal Populations Are Differentially Organized and Activated by Estradiol in Mice

Abstract

AbstractIn rodents, kisspeptin-expressing neurons are localized in 2 hypothalamic brain nuclei (anteroventral periventricular nucleus/periventricular nucleus continuum [AVPv/PeN] and arcuate nucleus [ARC]) and modulated by sex steroids. By using wild-type (WT) and aromatase knockout (ArKO) mice (which cannot convert testosterone into estradiol) and immunohistochemistry, we observed that WT females showed a continuous increase in kisspeptin peptide expression in the ARC across postnatal ages (postnatal day 5 [P5] to P25), whereas WT males did not show any expression before P25. Kisspeptin peptide expression was also present in ArKO females but did not increase over this early postnatal period, suggesting that kisspeptin peptide expression in the ARC is organized by estradiol-dependent and -independent mechanisms. We also compared kisspeptin peptide expression between groups of adult male and female mice that were left gonadally intact or gonadectomized and treated or not with estradiol (E2) or DHT. In the ARC, kisspeptin peptide expression decreased after gonadectomy but was completely rescued by either E2 or DHT treatment in each sex/genotype. However, kisspeptin peptide expression was lower in ArKO compared with WT subjects. In the AVPv/PeN, ArKO females showed a male-typical kisspeptin peptide expression, and adult E2 treatment partially restored kisspeptin peptide expression. Finally, we showed that, after E2 treatment of WT and ArKO mice between either P5 and P15 or P15 and P25, AVPv/PeN kisspeptin peptide expression could be still masculinized at P5, but was feminized from P15 onward. In conclusion, the 2 kisspeptin neuronal populations (AVPv/PeN vs ARC) seem to be differentially organized and activated by E2.

Keywords

Male, Sciences sociales & comportementales, psychologie, Time Factors, Hypothalamus, Cell Count, Mice, Aromatase, Sex Factors, Animals, Castration, Neurosciences & comportement, Mice, Knockout, Neurons, Kisspeptins, Neurosciences & behavior, Estradiol, Arcuate Nucleus of Hypothalamus, Dihydrotestosterone, Estrogens, Immunohistochemistry, Mice, Inbred C57BL, Social & behavioral sciences, psychology, Androgens, Female

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%
Green
bronze