Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dehydration of synthetic autunite hydrates

Authors: A.G. Sowder; Sue B. Clark; R.A. Fjeld;

Dehydration of synthetic autunite hydrates

Abstract

The dehydration of uranyl minerals can affect phase structure and stability. Synthetic autunite hydrates, Ca[(UO2)(PO4)]2· × H2O, were studied by X-ray powder diffractometry (XRD) and thermogravimetric analysis (TGA) to address ambiguous or contradictory reports in the literature. Structurally, XRD analysis supported the three well-defined phases commonly reported in the literature, i.e. autunite, metaautunite I, and metaautunite II. In addition, a fourth phase with a basal plane spacing between that of autunite and metaautunite I, designated metaautunite Ia, was identified as an apparent metastable intermediate. TGA analysis confirmed that water loss or accumulation is tolerated to different degrees among the autunite hydrates. Loss of low temperature water appears to initiate collapse of the interlayer spacing from 10 to 9 Å to form metaautunite I and/or Ia, while the lower hydrates accommodate minor water loss and accumulation without significant structural alteration. Our results support previous research indicating the reversibility of the autunite to metaautunite I conversion. The complex dehydration pattern of autunite is not observed in all the 1:1 uranyl phosphates, such as chernikovite (H[(UO2)(PO4)] · 4 H2O).

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!