Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assembly of a Homochiral, Body-Centered Cubic Network Composed of Vertex-Shared Mg12 Cages: Use of Electrospray Ionization Mass Spectrometry to Monitor Metal Carboxylate Nucleation

Authors: Jeffrey A, Rood; William C, Boggess; Bruce C, Noll; Kenneth W, Henderson;

Assembly of a Homochiral, Body-Centered Cubic Network Composed of Vertex-Shared Mg12 Cages: Use of Electrospray Ionization Mass Spectrometry to Monitor Metal Carboxylate Nucleation

Abstract

Reaction of Mg(NO3)2.6H2O with (+)-camphoric acid (H2cam) in acetonitrile results in the immediate formation of soluble, dimetallic [Mg2(Hcam)3]+ cations. The formation of these stable cations in solution was determined by electrospray ionization mass spectrometry (ESI-MS). These dimers are 3-fold paddle-wheels, which associate together through the neutral acid units to build the metal-organic framework [Mg2(Hcam)3.3H2O].NO3.MeCN, 1. The network consists of a series of fused Mg12 cages that have 12 water molecules at their centers, creating isolated 0D cavities within the structure. Overall, the extended structure of 1 is a body-centered cubic (bcu) lattice, with the Mg12 cages being utilized as eight-connected nodes. The framework of 1 is chiral and adopts the very unusual space group I23. Use of 1,3-propanediol as an additive results in the formation of the simple 1D polymer [Mg(cam){HO(CH2)3OH}2], 2. In 2, each carboxylate-bridged metal center is chelated by two diols. ESI-MS studies confirm the formation of new ions in these solutions. The identities of 1 and 2 were confirmed by a combination of single-crystal X-ray diffraction, elemental analyses, IR, NMR, themogravimetric analyses, and ESI-MS data. ESI-MS has proven to be a valuable technique in the identification of stable SBUs in solution prior to network formation.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    112
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
112
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!