Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Pharmacology
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reduced hyperalgesia induced by nerve injury, but not by inflammation in mice lacking protein kinase Cγ isoform

Authors: M, Ohsawa; M, Narita; H, Mizoguchi; E, Cheng; L F, Tseng;

Reduced hyperalgesia induced by nerve injury, but not by inflammation in mice lacking protein kinase Cγ isoform

Abstract

Protein kinase C is one of protein kinases which might be involved in the nerve injury- or inflammation-induced hyperalgesia. The present study was designed to investigate the hyperalgesia with thermal paw-withdrawal test induced by sciatic nerve ligation or by intraplantar injection of a complete Freund's adjuvant solution in protein kinase C gamma knockout and its wild-type mice. Either sciatic nerve ligation or intraplantar injection of a complete Freund's adjuvant caused a marked decrease of the paw-withdrawal latency only on the ipsilateral, but not on the contralateral side of the paw in wild-type mice. This ipsilateral hyperalgesia induced by sciatic nerve ligation was significantly attenuated in protein kinase C gamma knockout mice. On the other hand, the ipsilateral hyperalgesia induced by complete Freund's adjuvant remained about the same in protein kinase C gamma knockout mice as in wild-type mice. The results indicate that protein kinase C gamma is involved in the development of the thermal hyperalgesia induced by nerve ligation, but not by complete Freund's adjuvant-induced inflammation.

Related Organizations
Keywords

Inflammation, Male, Mice, Knockout, Freund's Adjuvant, Sciatic Nerve, Isoenzymes, Disease Models, Animal, Mice, Hyperalgesia, Animals, Ligation, Protein Kinase C

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!