Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

NOS3 deficiency augments hypoxic pulmonary vasoconstriction and enhances systemic oxygenation during one-lung ventilation in mice

Authors: Rong, Liu; Oleg V, Evgenov; Fumito, Ichinose;

NOS3 deficiency augments hypoxic pulmonary vasoconstriction and enhances systemic oxygenation during one-lung ventilation in mice

Abstract

Nitric oxide (NO), synthesized by NO synthases (NOS), plays a pivotal role in regulation of pulmonary vascular tone. To examine the role of endothelial NOS (NOS3) in hypoxic pulmonary vasoconstriction (HPV), we measured left lung pulmonary vascular resistance (LPVR), intrapulmonary shunting, and arterial Po2 (PaO2) before and during left mainstem bronchus occlusion (LMBO) in mice with and without a deletion of the gene encoding NOS3. The increase of LPVR induced by LMBO was greater in NOS3-deficient mice than in wild-type mice (151 ± 39% vs. 109 ± 36%, mean ± SD; P < 0.05). NOS3-deficient mice had a lower intrapulmonary shunt fraction than wild-type mice (17.1 ± 3.6% vs. 21.7 ± 2.4%, P < 0.05) during LMBO. Both real-time PaO2 monitoring with an intra-arterial probe and arterial blood-gas analysis during LMBO showed higher PaO2 in NOS3-deficient mice than in wild-type mice ( P < 0.05). Inhibition of all three NOS isoforms with Nω-nitro-l-arginine methyl ester (l-NAME) augmented the increase of LPVR induced by LMBO in wild-type mice (183 ± 67% in l-NAME treated vs. 109 ± 36% in saline treated, P < 0.01) but not in NOS3-deficient mice. Similarly, systemic oxygenation during one-lung ventilation was augmented by l-NAME in wild-type mice but not in NOS3-deficient mice. These findings indicate that NO derived from NOS3 modulates HPV in vivo and that inhibition of NOS3 improves systemic oxygenation during acute unilateral lung hypoxia.

Related Organizations
Keywords

Nitric Oxide Synthase Type III, Bronchoconstriction, Hypertension, Pulmonary, Nitric Oxide Synthase Type II, Pulmonary Artery, Mice, Inbred C57BL, Mice, Animals, Vascular Resistance, Nitric Oxide Synthase, Hypoxia, Pulmonary Ventilation, Lung

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!