Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1145/359763...
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Notably Inaccessible — Data Driven Understanding of Data Science Notebook (In)Accessibility

Authors: Venkatesh Potluri; Sudheesh Singanamalla; Nussara Tieanklin; Jennifer Mankoff;

Notably Inaccessible — Data Driven Understanding of Data Science Notebook (In)Accessibility

Abstract

Computational notebooks, tools that facilitate storytelling through exploration, data analysis, and information visualization, have become the widely accepted standard in the data science community. These notebooks have been widely adopted through notebook software such as Jupyter, Datalore and Google Colab, both in academia and industry. While there is extensive research to learn how data scientists use computational notebooks, identify their pain points, and enable collaborative data science practices, very little is known about the various accessibility barriers experienced by blind and visually impaired (BVI) users using these notebooks. BVI users are unable to use computational notebook interfaces due to (1) inaccessibility of the interface, (2) common ways in which data is represented in these interfaces, and (3) inability for popular libraries to provide accessible outputs. We perform a large scale systematic analysis of 100000 Jupyter notebooks to identify various accessibility challenges in published notebooks affecting the creation and consumption of these notebooks. Through our findings, we make recommendations to improve accessibility of the artifacts of a notebook, suggest authoring practices, and propose changes to infrastructure to make notebooks accessible. An accessible PDF can be obtained at https://blvi.dev/noteably-inaccessible-paper

19 pages, 8 figures, 5 tables

Related Organizations
Keywords

Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Computers and Society, Computer Science - Software Engineering, Computers and Society (cs.CY), Computer Science - Human-Computer Interaction, Human-Computer Interaction (cs.HC)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green
hybrid