
doi: 10.1101/570614
AbstractA variety of experimental and computational methods have been developed to demultiplex samples from pooled individuals in a single-cell RNA sequencing (scRNA-Seq) experiment which either require adding information (such as hashtag barcodes) or measuring information (such as genotypes) prior to pooling. We introduce scSplit which utilises genetic differences inferred from scRNA-Seq data alone to demultiplex pooled samples. scSplit also extracts a minimal set of high confidence presence/absence genotypes in each cluster which can be used to map clusters to original samples. Using a range of simulated, merged individual-sample as well as pooled multi-individual scRNA-Seq datasets, we show that scSplit is highly accurate and concordant with demuxlet predictions. Furthermore, scSplit predictions are highly consistent with the known truth in cell-hashing dataset. We also show that multiplexed-scRNA-Seq can be used to reduce batch effects caused by technical biases. scSplit is ideally suited to samples for which external genome-wide genotype data cannot be obtained (for example non-model organisms), or for which it is impossible to obtain unmixed samples directly, such as mixtures of genetically distinct tumour cells, or mixed infections. scSplit is available at: https://github.com/jon-xu/scSplit
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
