Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Parasitology Interna...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Parasitology International
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Egg formation and the early embryonic development of Aspidogaster limacoides Diesing, 1835 (Aspidogastrea: Aspidogastridae), with comments on their phylogenetic significance

Authors: Zdzisław, Swiderski; Larisa G, Poddubnaya; David I, Gibson; Céline, Levron; Daniel, Młocicki;

Egg formation and the early embryonic development of Aspidogaster limacoides Diesing, 1835 (Aspidogastrea: Aspidogastridae), with comments on their phylogenetic significance

Abstract

Ultrastructural aspects of the early embryonic development of the aspidogastrean Aspidogaster limacoides are described and their phylogenetic implications discussed. Whereas the proximal regions of the uterine lumen usually contain unembryonated eggs or eggs with early embryos, the posterior or distal regions of the uterus are filled with eggs containing a fully-developed cotylocidium. The eggs of A. limacoides can be classified as polylecithal due to the presence of numerous vitellocytes which accompany each fertilized oocyte or ovum during egg formation. The results of the study are described in details under six headings: (1) general characteristics of the intrauterine eggs; (2) eggshell and operculum formation; (3) unembryonated eggs; (4) zygote formation and early cleavage divisions; (5) embryonic envelope formation; and (6) early degeneration or apoptosis of some blastomeres. The late differentiation of the operculum, possible functions of GER-bodies, and the early degeneration of vitellocytes and some blastomeres in this species are compared, drawn and discussed with corresponding observations reported for other parasitic Platyhelminthes. The most important differences are apparent in the number of egg envelopes and their mode of formation in A. limacoides compared with previous reports for both digeneans and cestodes. The results of the present TEM study indicate that the three macromeres, resulting from two cleavage divisions, take part in the formation of a single embryonic outer envelope in A. limacoides, and that this takes place at a very early stage of embryogenesis. Their fusion results in the formation of a single continuous cytoplasmic layer surrounding the early embryo, which is composed of only a small number of undifferentiated blastomeres. The early separation of the macromeres may indicate an equal cleavage pattern. These results suggest that the systematic position of the Aspidogastrea among the Platyhelminthes still remains somewhat equivocal, and indicate the need for more studies on the embryonic development, larval morphogenesis and molecular phylogeny for the elucidation of the relationships between this enigmatic group and related taxa.

Keywords

Male, Blastomeres, Embryo, Nonmammalian, Zygote, Fishes, Trematode Infections, Microscopy, Electron, Morphogenesis, Animals, Female, Trematoda, Phylogeny, Ovum

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!